If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4c^2+14c=0
a = 4; b = 14; c = 0;
Δ = b2-4ac
Δ = 142-4·4·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-14}{2*4}=\frac{-28}{8} =-3+1/2 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+14}{2*4}=\frac{0}{8} =0 $
| x/5+13=37 | | 2(b+18)=76 | | 9x-3=8-5x | | 16+4x=3(-x+2)-18 | | 60=2(s-38) | | w/4-5=1 | | x+10-6=2x+12 | | 5/6-4/3y=2/3 | | 6a-4=6+8 | | 0=c-100/7 | | 3x+4+140+8x+4=180 | | 64=8(j+7) | | 9+8x=−17(x−2)+11+28x | | q/12=25/30 | | -36=-6(c-80) | | 36=9(p-94) | | 33=g/3+26 | | y/9+60=70 | | (11x+2)=58+(5x+10) | | 4=20-2f | | 14=7z-14 | | S+3s-3s+3s-2s=8 | | 65=5(y+1 | | x/3-11=1 | | g/8+58=65 | | 4(72-y)+2y=200 | | 16=4+4m | | 4x=6=22 | | 14x-12=13x-4 | | 5x=4x-27=81 | | 6x-9=5x+0 | | 2x+13=31+4x |